Determination of the secondary structure and global topology of the 44 kDa ectodomain of gp41 of the simian immunodeficiency virus by multidimensional nuclear magnetic resonance spectroscopy.
نویسندگان
چکیده
The gp41 protein of the human (HIV) and simian (SIV) immunodeficiency viruses is part of the envelope glycoprotein complex gp41/gp120 which plays an essential role in viral infection. We present a multidimensional NMR study on the trimeric 44 kDa soluble ectodomain of SIV gp41 (e-gp41), comprising residues 27 to 149. Despite the large molecular weight and very limited spectral dispersion, complete backbone 1H, 13C, 13CO and 15N assignments have been made using a combination of triple resonance experiments on uniformly 13C/15N and 2H/13C/15N-labeled samples. The secondary structure of SIV e-gp41, derived on the basis of 13C chemical shifts, NH exchange rates, medium range nuclear Overhauser enhancements (NOE), and 3JHNalpha coupling constants, consists of a 49 residue helix at the N terminus (residues 29 to 77) and a 40 residue helix at the C terminus (residues 108 to 147), connected by a 30 residue loop which does not display any of the characteristics of regular secondary structure. The cross-peak intensities of the loop region in scalar correlation experiments suggests that it is more mobile than the core helical regions. The presence, however, of numerous long range NOEs, both intra and inter-subunit, within the loop indicates that it adopts a well-defined structure in which the loops from the three subunits interact with each other. Based on a number of long range intra and inter-subunit NOEs, a topological model is presented for the symmetric SIV e-gp41 trimer in which the N-terminal helices are packed within the protein interior in a parallel trimeric coiled-coil arrangement, while the C-terminal helices are located on the protein exterior, oriented antiparallel to the N-terminal helices.
منابع مشابه
Three-dimensional solution structure of the 44 kDa ectodomain of SIV gp41.
The solution structure of the ectodomain of simian immunodeficiency virus (SIV) gp41 (e-gp41), consisting of residues 27-149, has been determined by multidimensional heteronuclear NMR spectroscopy. SIV e-gp41 is a symmetric 44 kDa trimer with each subunit consisting of antiparallel N-terminal (residues 30-80) and C-terminal (residues 107-147) helices connected by a 26 residue loop (residues 81-...
متن کاملHIV-1 broadly neutralizing antibody extracts its epitope from a kinked gp41 ectodomain region on the viral membrane.
Although rarely elicited during natural human infection, the most broadly neutralizing antibodies (BNAbs) against diverse human immunodeficiency virus (HIV)-1 strains target the membrane-proximal ectodomain region (MPER) of viral gp41. To gain insight into MPER antigenicity, immunogenicity, and viral function, we studied its structure in the lipid environment by a combination of nuclear magneti...
متن کاملSolid-state nuclear magnetic resonance (NMR) spectroscopy of human immunodeficiency virus gp41 protein that includes the fusion peptide: NMR detection of recombinant Fgp41 in inclusion bodies in whole bacterial cells and structural characterization of purified and membrane-associated Fgp41.
Human immunodeficiency virus (HIV) infection of a host cell begins with fusion of the HIV and host cell membranes and is mediated by the gp41 protein, a single-pass integral membrane protein of HIV. The 175 N-terminal residues make up the ectodomain that lies outside the virus. This work describes the production and characterization of an ectodomain construct containing the 154 N-terminal gp41 ...
متن کامل3D NMR experiments for measuring 15N relaxation data of large proteins: application to the 44 kDa ectodomain of SIV gp41.
A suite of 3D NMR experiments for measuring 15N-¿1H¿ NOE, 15N T1, and 15N T1rho values in large proteins, uniformly labeled with 15N and 13C, is presented. These experiments are designed for proteins that exhibit extensive spectral overlap in the 2D 1H-15N HSQC spectrum. The pulse sequences are readily applicable to perdeuterated samples, which increases the spectral resolution and signal-to-no...
متن کاملNUCLEAR MAGNETIC RESONANCE STUDY OF THE STRUCTURE OF GLYOXALDIHYDRAZONE
Study of the nuclear magnetic resonance spectra of glyoxaldihydrazone in dimethylsulfoxide and deuterochlorofonn leads to the conclusion that this compound exists predominantly in non-chelate structure
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 271 5 شماره
صفحات -
تاریخ انتشار 1997